
CS152: Computer Systems Architecture
Operating System Support

Sang-Woo Jun

Winter 2022

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Computer architecture so far

CPU

Memory

lw s0, 0(t)
addi s1, s0, 1
…

What do we have to add to our processor to support a modern operating system?

Single program, communicates via MMIO

Computer architecture so far

❑ Single program, communicates via MMIO

❑ What do we have to add to support a modern operating system?
o Isolation between processes

o System abstraction – Hide details about underlying hardware

o Resource management – CPU, memory, disk, network, …

CPU

Memory

lw s0, 0(t)
addi s1, s0, 1
…

Goal: support consistent abstraction to software
Even with changing hardware, drivers, etc!

Aside: The old days

❑ Old personal operating systems (MS-DOS, CP/M, …) were very basic
o The division between OS and user software was not strong

o OS basically “jalr” into the user software, and “ret” out

o User software had all access to hardware, including OS files on disk

o Only one software running at a time!

o Software failure -> System crash!

❑ Not much hardware abstraction
o Each software had to handle each

possible video, sound, etc hardware

Aside: The CP/M operating system (1974)

❑ Control Program/Monitor, created by Digital Research, Inc.
o Designed for Intel 8080, with less than 64 KiB of memory

o Massive popularity, massive influence to MS-DOS (1981)
• A: B: C: device naming, “BIOS”, AAAAAAAA.EXT naming scheme, etc survives until now

❑ Extremely simple O/S
o Still used/modified by hobbyists!

Source: Digital Research, Inc.Source: http://benryves.com/projects/z80computer

Aside: The CP/M operating system (1974)

❑ Once booted, the CCP command line is presented.

❑ When executing software, binary is loaded to low part of free memory,
and OS simply jumps to that region
o Always only one execution context (process)

❑ User software interfaces with OS via BDOS
o BDOS location is stored as a pointer in

“Low storage”

o Scheme allows contiguous memory for software
regardless of memory capacity

❑ When done execution, simply returns to OS
Simple! Software has exclusive access to machine
OS is effectively just like a library – DOS was very similar

https://obsolescence.wixsite.com/obsolescence/cpm-internals

“Basic Disk Operating System”

Aside: Something new – multitasking

❑ Multiple tasks (processes) executing concurrently
o Multi-user systems, servers with multiple parallel workloads, services, GUI, …

❑ Memory usage becomes complicated with multitasking
o Two binaries cannot be loaded to same memory location, software can be loaded

to arbitrary, possibly non-contiguous, locations

o Will have contention between processes for data memory locations

o We cannot use absolute addressing any more for jumps and data referencing!

o No longer simple address model with assumed exclusive access to memory

Address “0x3c0” is encoded as literal.
Needs exclusive access guarantee
(At compile time?!)

Modern operating systems

❑ Modern operating systems support user process isolation

❑ The OS kernel provides a private address space to each process
1. Each process thinks it has exclusive access to contiguous memory
2. A process is not allowed to access the memory of other processes
3. No user process can access OS memory

❑ The OS kernel schedules processes into the CPU
o Each process is given a fraction of CPU time
o A process cannot use more CPU time than allowed

❑ The OS kernel lets processes invoke system services (e.g., access files or
network sockets) via system calls

Familiar concepts from OS classes!

Architectural support for operating systems

❑ Operating system must have different capabilities from user processes
o Typical ISA defines two or more “privilege levels” (e.g., “user”, and “supervisor”)

o Some instructions and registers that are only accessible for a process executing in
supervisor mode

o Typically, the very first process to execute is given supervisor privilege, and is
responsible for spawning future user processes

❑ Interrupts and exceptions to transition from user to supervisor mode

❑ Virtual memory to provide private address spaces and abstract the
storage resources of the machine
o User processes executing LW/SW/etc access memory through a hardware virtual

memory manager

Topics

❑ Privilege levels

❑ Interrupts and exceptions

❑ Virtual memory

Privilege levels in modern architectures

❑ RISC-V has three (or more) formally defined levels
o Machine level, full access to all hardware after initial boot

o Hypervisor level – For virtualization. Recently formally defined! (2022)

o Supervisor level – For operating systems

o User level – For applications

❑ x86 has “protection rings”
o Typically only ring 0 and 3 are used

o Additional ring -1 for hypervisors

❑ Each process/thread belongs on one level

Less privileged levels have more restrictions
- Cannot access some registers
- Can only access memory via virtual memory, not raw hardware

Example: RISC-V

❑ Special register, “mstatus” (for “machine status”)
o Among other information, stores the privilege level of the current process

o Writing a new value to it can change the privilege level, but only machine mode is
allowed to write to it

o OS runs in machine mode, when user process must be spawned, it first spawns a
kernel process which downgrades itself to user mode before jumping to actual
user software

❑ Special ISA instructions to access the special registers
o One of many “Control Status Register”

o csrr, csrw instructions, only allowed in machine mode

o There are many CSRs! Will mention more soon.

x86 typically has separate instructions for each privileged operation

Topics

❑ Privilege levels

❑ Interrupts and exceptions

❑ Virtual memory

Exceptions?

❑ Event that needs to be processed by the OS kernel.
The event is usually unexpected or rare
o Exceptions cause an exception handler in OS, in higher privilege

Typical terminology

❑ Exceptions: Usually events caused by the running process itself
o Illegal memory access (SEGFAULT), divide-by-zero, system call, etc

❑ Interrupts: Usually events caused by the outside world
o Timer, I/O completion, keystroke, etc

❑ Terminology is often used interchangeably…

Handling exceptions

❑ When an exception happens, the processor:
o Stops the current process at instruction Ii, completing all the instructions up to Ii-1

o Saves the PC of instruction Ii and the reason for the exception in special
(privileged) registers

o Enables supervisor mode, disables interrupts*, and transfers control to a pre-
specified exception handler PC

❑ After the exception handler finishes, the processor:
o Returns control to the user process at instruction Ii

o User process is oblivious to the interrupt

❑ If an interrupt is due to an illegal operation, the OS aborts the process
o e.g., SEGFAULT

Handling exceptions

❑ The operating system is responsible for telling the processor how to
handle each type of exception
o Typically via a table of pointers in main memory, each corresponding to a

particular exception type

o A special register is set with a pointer to the table in memory (“mtvec” for RISC-V,
“IDTR” for x86)

❑ For each exception, the CPU
transparently consults this register,
reads the table, and jumps to the
correct handler

“Machine Trap Vector”

“Interrupt Descriptor Table Register”

No software involved in this process. Hardware!

Exception use #1: CPU scheduling

❑ The OS kernel schedules processes into the CPU
o Each process is given a fraction of CPU time

o A process cannot use more CPU time than allowed

❑ Key enabling technology: Timer interrupts
o Kernel sets timer, which raises an interrupt after a specified time

Exception Use #2: Emulating Instructions

❑ mul x1, x2, x3 is an instruction in the RISC-V ‘M’ extension (x1 = x2 * x3)
o If ‘M’ is not implemented, this is an illegal instruction

❑ What happens if we run code for an RV32IM ISA on an RV32I machine?
o mul causes an illegal instruction exception

o The exception handler can take over and abort the process… but it can also
emulate the instruction!

Emulating Unsupported Instructions

❑ Program believes it is executing in a RV32IM processor, when it’s actually
running in a RV32I

❑ The IBM System/360 line of machines used this method to build cheap
machines that adhere to ISA

What are the downsides?
Slower performance compared to HW implementation!

Exception Use #3: System Calls

❑ User process has no access to raw hardware resources (not even the
keyboard)
o User process communicates with the OS via system calls (and other methods)

o The syscall instruction (SYSCALL in x86, ecall in RISC-V) results in a machine-mode
exception that can handle the request
• Arguments and return values following familiar function call conventions

o Aside: x86 used to assign a special number in the interrupt table (0x80) to handle
syscalls. This is still technically supported, but discouraged
• “int 0x80” vs. “syscall”

Exception details in RISC-V

❑ RISC-V provides several privileged registers, called control and status
registers (CSRs), e.g.,
o mepc: PC of instruction that caused exception
o mcause: cause of the exception (interrupt, illegal instr, etc.)
o mtvec: address of the exception handler
o mstatus: status bits (privilege mode, interrupts enabled, etc.)

❑ RISC-V also provides privileged instructions, e.g.,
o csrr and csrw to read/write CSRs
o mret to return from the exception handler to the process
o Trying to execute these instructions from user mode causes an exception.

normal processes cannot take over the system

System call details for RISC-V

❑ ecall instruction causes an exception, sets mcause CSR to a particular
value

❑ Application Binary Interface (ABI) convention defines how process and
kernel pass arguments and results
o Typically, similar conventions as a function call:

o System call number in a7

o Other arguments in a0-a6

o Results in a0-a1 (or in memory)

o All registers are preserved (treated as callee-saved) Why is this?

Typical System Calls

❑ Accessing files (sys_open/close/read/write/…)

❑ Using network connections (sys_bind/listen/accept/…)

❑ Managing memory (sys_mmap/munmap/mprotect/…)

❑ Getting information about the system or process (sys_gettime/getpid/getuid/…)

❑ Waiting for a certain event (sys_wait/sleep/yield…)

❑ Creating and interrupting other processes (sys_fork/exec/kill/…)

❑ … and many more!

❑ Programs rarely invoke system calls directly. Instead, they are used by
library/language routines

❑ Some of these system calls may block the process!

Hello world using x86 system calls

❑ Old example using
using int 0x80

http://boccelliengineering.altervista.org/junk/asm/assembly1.html

So far…

❑ Operating System goals:
o Protection and privacy: Processes cannot access each other’s data

o Abstraction: OS hides details of underlying hardware
• e.g., processes open and access files instead of issuing raw commands to disk

o Resource management: OS controls how processes share hardware resources
(CPU, memory, disk, etc.)

❑ Key enabling technologies:
o User mode + supervisor mode w/ privileged instructions

o Exceptions to safely transition into supervisor mode

o Virtual memory to provide private address spaces and abstract the machine’s
storage resources (next lecture)

Context switching

❑ On a multitasked system, a processor cycles over multiple process,
executing them in small increments

❑ Simply jumping between where we left off does not ensure correctness!
o When we jumped into the kernel-space interrupt handler, the register values are

stored in the stack, so they can be reclaimed after exiting the interrupt handler
• Remember, all registers are callee-saved in this situation because user process is unaware

o How do we know where to get the next register values? e.g., stack pointer?
Stack

Process 1

Stack

Proc1’s register values

Kernel-space handler

Process 1

Timer
interrupt

Jump to
process 2

???

Context switching

❑ Context: The state of the process or thread which must be saved and
restored for seamless multiprocessing
o So far: PC, entirety of the register file (including the stack pointer, x2)

o In reality, a lot more information including virtual memory state

❑ Context switching: Storing the context of the current process and loading
the context of a new process
o The processor is (conceptually) oblivious to processes

• The concept of processes does not exist at the processor level, it’s just executing instructions

o Like loading the same body (processor) with a different soul (context)

Context switching – Process Control Block

❑ Context information is managed in the OS via a construct called the
Process Control Block (PCB)
o Again, the processor is completely unaware of this

o Stores information including the process ID, context state (register values, etc),
meta-information for scheduling control (when was it last scheduled? etc)

o An array of PCBs, one element per process/thread

o Operating system topic! Only introduced here to connect the dots between
architecture and OS

❑ In Linux, PCB is “struct task_struct”

Context switching – Process Control Block

❑ The OS software (not the processor hardware) is responsible for context
switching, including
o Storing the current context to the appropriate PCB

o Deciding which process to execute (and for how long)

o Loading the next context from the PCB to the hardware registers

o Resuming the next process
• “Resuming” because it is currently suspended while the current process was executing

Stack

Process 1

Stack

Proc1’s register values
Process 1

Timer
interrupt

Jump to
process 2

Process 2

Stack pointer

Proc2’s register values

Stack pointer

Stack

Process 1

Process 2
Stack pointer

Proc1’s register values

Aside:
Hardware vs. software context switching

❑ Some processor designs support hardware handling of context switching
operations (e.g., x86)
o CALL or JMP under special circumstances evoke hardware handling of context

switching

o Processor hardware automatically read/writes the PCB if it is in a specific format

❑ Unfortunately, most mainstream OSs don’t use it
o High overhead as some of the hardware-defined context includes some values

that are no longer useful in modern OSs
• e.g., segment registers, will introduce soon

o Some newer registers are not automatically restored
• e.g, floating point

Modern processors often omit this feature in 64-bit mode

Aside: x86 way of creating user-level
processes

❑ x86 doesn’t provide a way to explicitly switch to user level
o Instead, we write code that pretends to return from an interrupt, back into user

level

o Allocate stack space in memory, and populate it with a return address, stack
pointer, thread information, … pretending to be a user level process whose
interrupt is being handled

o Call “IRET” which reads the stack, and “returns” to user level operation

System boot process

❑ Our RV32I processor, when powered on, starts executing from address 0
o When powered on, memory is blank… How does OS get there?

o Short answer: Firmware (e.g., BIOS, UEFI)

❑ Firmware is usually located in address 0
o Special ROM/EEPROM/etc hardwired to map to address zero

o On power on, CPU executes the firmware to load a small “bootloader” from
storage and loads it to a special address, and transfers control

o Bootloader loads the actual OS kernel from storage to memory and transfers
control

CPU
ROM

RAM

Kernel

Firmwareaddr 0

Why bootloader?

❑ BIOS (Basic Input/Output System) treated the first sector (512 Bytes) of a
storage medium specially (MBR, “Master Boot Record”)
o BIOS loaded the MBR of the first HDD to memory and executed it

o Bootloader had to fit in 512 Bytes, and is responsible for finding/loading the OS
kernel and executing it

o Due to complexities of file systems, etc, sometimes two-level bootloaders were
used (e.g., GRUB on Linux)
• Bootloader loads the second bootloader and executes it, which in turn loads the whole kernel

❑ UEFI (Unified Extensible Firmware Interface) doesn’t use MBR, instead
stores bootloaders in a special UEFI partition
o Still not the whole kernel!

